野花社区日本最新中文,性一交一乱一伦一色一情丿按摩 ,亚洲综合激情另类专区,欧美成本人视频免费播放

歡迎光臨錦工風(fēng)機官方網(wǎng)站。提供優(yōu)質(zhì)羅茨鼓風(fēng)機,羅茨風(fēng)機,回轉(zhuǎn)式鼓風(fēng)機星型供料器,氣力輸送設(shè)備等產(chǎn)品

Numerical of Transient Flow in Roots Blower

Numerical of Transient Flow in Roots Blower

The performance of rotary positive displacement machines highly depends on the operational clearances. It is widely believed that computational fluid dynamics (CFD) can help understanding internal leakage flows.

Developments of grid generating tools for analysis of leakage flows by CFD in rotary positive displacement machines have not yet been fully validated. Roots blower is a good representative of positive displacement machines and as such is convenient for optical access in order to analyse internal flows. The experimental investigation of flow in optical roots blower by phase-locked PIV (Particle Image Velocimetry) performed in the Centre for Compressor Technology at City, University of London provided ?the velocity field suitable for validation of the simulation model. This paper shows the results ?of the three-dimensional CFD transient simulation model of a Roots blower with the dynamic numerical grids generated by SCORG and flow solution solved in ANSYS CFX flow solver to obtain internal flow patterns. The velocity fields obtained by simulation agree qualitatively ?with the experimental results and show the correct main flow features in the working chamber. There are some differences in the velocity magnitude and vortex distribution. The flow field in roots blower is highly turbulent and three-dimensional. The axial clearances should be included, and the axial grids should be refined in the simulation method. The paper outlines some directions for future simulation and experimental work. The work described in this paper is a part of the large project set to evaluate characteristics of the internal flow in rotary positive displacement machines and to characterize leakage?flows.

Rotary positive displacement machines are widely used in many industrial fields. Depending on the application they may contain one or more rotating elements and a stator. Typical representatives of a single rotor machine are progressive cavity pumps and single screw compressors. Twin rotor machines are more common. These can be designed either with straight lobes as in roots blowers and gear pumps, or with helical lobes used in screw compressors, expanders and pumps. Screw machines can handle single phase fluids in the form of a gas, vapour or liquid or multi-phase fluids mixed from any combination of single phase fluids and solids and may operate above or under atmospheric pressures. Liquid and multiphase pumps are often configured with multiple rotors. In all these machines, gaps between rotating and stationary parts have to be maintained in order to allow a safe and reliable operation but are desired to be minimal in order to reduce leakage flows, which play critical role in theperim

performance. The challenge is to maintain the size of the gaps due to deformations of the machine elements which could be caused by thermal of physical loads.

Many researchers have studied leakage flows through clearance gaps in rotary positive displacement machines both experimentally and numerically. Numerical methods are mostly based either on chamber modelling [1], or computational fluid dynamics (CFD) model [2, 3]. In chamber models, it is usually assumed that the momentum change in the main domain is negligible due to the internal energy being dominant while the velocity of the leaking fluid is obtained based on the assumption of the isentropic flow through the nozzle. A CFD model allows more accurate calculation of velocities both in the main domain and in the leakage paths by numerically solving governing conservation equations such as mass, energy and momentum. This is of course subject to availability of an accurate numerical mesh which can capture both, the main flow domain and clearances. The latest developments in grid generation for screw machines described in detail in Rane et al. [4, 5] have led to the mesh which can be used in all flow calculations and for most rotary positive displacement machines. This grid generation methods allows use of any commercially available CFD solvers. The size of the mesh, the speed of its generation as well as the speed of calculation by commercial solvers is suitable for industrial application. However, it is yet not fully validated if it sufficiently accurately captures flow in clearances.

Numerical procedures for calculation of performance using either chamber models or 3D CFD are usually validated by measurements of the integral parameters such as the total mass flow rate and power as shown in recent studies by Kovacevic and Rane [6]. These indicate that the clearance flow is mostly well captured. However, unless the local velocities are measured, the leakage models cannot be fully validated. In addition, even the velocity distribution in the main flow of a rotary positive displacement machine has not been studied in detail experimentally. Therefore, for the full validation of numerical calculations it is required to obtain accurate measurements of the flow field both in the main working domain and in the clearance gaps of a rotary positive displacement machine.

山東錦工有限公司
地址:山東省章丘市經(jīng)濟開發(fā)區(qū)
電話:0531-83825699
傳真:0531-83211205
24小時銷售服務(wù)電話:15066131928


上一篇:
下一篇:
錦工最受信賴的羅茨風(fēng)機回轉(zhuǎn)風(fēng)機品牌
版權(quán)所有:Copright ? dangzhua.cn 山東錦工有限公司
備案信息:魯ICP備11005584號-5 ?
地址:山東省章丘市相公工業(yè)園
電話:0531-83825699傳真:0531-83211205 E-mail: sdroo@163.com 網(wǎng)站地圖
羅茨風(fēng)機咨詢電話
精品国产午夜肉伦伦影院| 亚洲国产天堂一区二区三区| 中国少妇内射xxxxⅹhd| a级国产乱理伦片| 日产精品一区二区| 中国大陆高清aⅴ毛片| 婷婷综合另类小说色区| 国产乱子影视频上线免费观看| 亚洲色大成网站www尤物| 性欧美长视频免费观看不卡| 国产精品爽爽久久久久久蜜臀| 欧美重口另类在线播放二区| 亚洲国产成人久久综合电影| 亚洲精品无码不卡| 肥老熟妇伦子伦456视频| 中文字幕日产无码| 无码国产精品一区二区免费式直播| 最近中文字幕mv在线资源| 精品无码久久久久国产| 国产成人综合色在线观看网站| 伊人久久精品无码二区麻豆| 少妇无码一区二区二三区| 国产男女猛烈无遮挡免费视频| 日产精品久久久久久久蜜臀 | 欧美大屁股xxxx高跟欧美黑人| 国产高清成人免费视频在线观看| 精品国产免费人成网站| 国产一区二区三精品久久久无广告| 日本三级理论久久人妻电影| 日本va欧美va欧美va精品| 国产超碰人人爽人人做| 国产精品一区二区在线观看| 国产精品免费观看调教网| 成人免费看www网址入口| 午夜dv内射一区区| 久久久久国产精品熟女影院| 亚洲欧美日韩中文无线码| 国产超碰人人做人人爽av大片| 中国女人内射6xxxxx| 中文无码乱人伦中文视频在线| 久久国产精品偷|